

# UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE DEPARTAMENTO DE ENERGIA E SUSTENTABILIDADE PLANO DE ENSINO\*

\* plano de ensino adaptado, em caráter excepcional e transitório, para substituição de aulas presenciais por aulas em meios digitais, enquanto durar a pandemia do novo coronavírus – COVID-19, em atenção à Portaria MEC 344, de 16 de junho de 2020 e à Resolução 140/2020/CUn, de 24 de julho de 2020.

# SEMESTRE 2020.1

| I. IDENTIFICAÇÃO DA DISCIPLINA: |           |                            |                           |          |                     |
|---------------------------------|-----------|----------------------------|---------------------------|----------|---------------------|
|                                 | CÓDIGO    | NOME DA DISCIPLINA         | Nº DE HORAS-AULA SEMANAIS |          | TOTAL DE HORAS-AULA |
|                                 |           |                            | TEORICAS                  | PRATICAS | SEMESTRAIS          |
|                                 | EES7304** | Energia Solar Fotovoltaica | 04                        | 00       | 72                  |

<sup>\*\*</sup> plano a ser considerado equivalente, em caráter excepcional e transitório na vigência da pandemia COVID-19, à disciplina EES7304.

| HORÁRIO           |                 |                           |
|-------------------|-----------------|---------------------------|
| TURMAS TEÓRICAS   | TURMAS PRÁTICAS | MODALIDADE                |
| 08653 - 2.0820(2) | -               | Ensino Remoto Emergencial |
| 4.0820(2)         |                 |                           |

| II. PROFESSOR(ES) MINISTRANTE(S)                       |  |  |
|--------------------------------------------------------|--|--|
| GIULIANO ARNS RAMPINELLI (giuliano.rampinelli@ufsc.br) |  |  |

| III. PRÉ-REQUISITO(S) |                     |  |
|-----------------------|---------------------|--|
| CÓDIGO                | NOME DA DISCIPLINA  |  |
| EES7170               | Circuitos Elétricos |  |

# IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA Bacharelado em Engenharia de Energia

## V. JUSTIFICATIVA

A demanda mundial de energia cresce continuamente e a sua geração está baseada na utilização de combustíveis fósseis, como por exemplo, petróleo e seus derivados, carvão e gás natural. Esse modelo predominante tem impactos relevantes na natureza. É necessário que a sociedade organizada construa um novo modelo energético baseado no aproveitamento racional e sustentável de fontes não renováveis e renováveis de energia. A energia solar fotovoltaica apresenta-se como uma alternativa viável de geração de energia renovável, confiável e com alto valor tecnológico agregado. A sua inserção na matriz energética auxilia na diversificação e segurança da mesma.

# VI. EMENTA

Panorama da energia solar fotovoltaica no Brasil e no Mundo. Fundamentos e conceitos de radiação solar. Semicondutores e efeito fotovoltaico. Células e módulos fotovoltaicos. Componentes e dimensionamento de sistemas fotovoltaicos conectados à rede. Geração distribuída com sistemas fotovoltaicos. Sistemas de rastreamento solar. Dimensionamento de usinas fotovoltaicas. Componentes e dimensionamento de sistemas fotovoltaicos autônomos. Projeto e análise de viabilidade econômica de sistemas fotovoltaicos.

## VII. OBJETIVOS

## **Objetivo Geral:**

Conhecer, identificar e compreender os fundamentos e características da energia solar fotovoltaica e identificar, analisar e dimensionar a aplicabilidade da mesma como fonte de geração renovável de energia elétrica.

## Objetivos Específicos:

Para alcançar os objetivos gerais, é esperado do aluno:

- Conhecer fundamentos de radiação solar e semicondutores:
- Conhecer as tecnologias de células e módulos fotovoltaicos;
- Identificar e compreender componentes dos sistemas fotovoltaicos;
- Dimensionar e desenvolver sistemas fotovoltaicos;
- Compreender características elétricas e térmicas de sistemas fotovoltaicos.

# VIII. CONTEÚDO PROGRAMÁTICO

#### Conteúdo Teórico:

- Fundamentos da radiação solar;
- Teoria de semicondutores:
- Efeito fotovoltaico;
- Células e módulos fotovoltaicos;
- Fundamentos de circuitos elétricos:
- Sistemas fotovoltaicos.

## IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A metodologia deve ser redefinida, especificando os recursos de tecnologias da informação e comunicação que serão utilizados para alcançar cada objetivo (preferencialmente na forma de uma matriz instrucional) (Art. 15 § 4° da Res. 140/2020/CUn de 24 de julho de 2020).

Todo material utilizado, como apresentações, *slides*, vídeos, referências, entre outros, deverá ser disponibilizado pelos professores posteriormente, garantindo o acesso do estudante a material adequado (Art. 15 § 3° da Res. 140/2020/CUn de 24 de julho de 2020).

Exemplo: Serão aplicadas diferentes metodologias de ensino à distância:

- 1) Aulas expositivas e síncronas, utilizando provavelmente a plataforma Google Meet;
- 2) Aulas expositivas e assíncronas, disponibilizada aos alunos por meio do AVA Moodle;

# X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá **frequência e aproveitamento** nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{MF + REC}{2}$$

 Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

# Avaliações

A nota das avaliações parciais (MF) será obtida a partir da média ponderada entre três trabalhos (T1, T2 E T3). Os trabalhos serão propostos ao longo do semestre e apresentam os pesos conforme equação abaixo:

$$MF = T1 * 0.25 + T2 * 0.25 + T3 * 0.50$$

# • Registro de frequência

Neste tópico, deve-se descrever como será realizado o registro de frequência dos alunos, seguindo parâmetros deliberados em colegiados (Art. 15 § 4° da Res. 140/2020/CUn de 24 de julho de 2020).

Exemplo: A frequência será aferida a partir da entrega das atividades avaliativas assíncronas, da participação nos fóruns e do registro de presença via Moodle durante atividades síncronas.

# Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97

 O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID).

| XI. CRONO        | GRAMA PREVISTO      |                                                                   |                         |                           |
|------------------|---------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
| AULA<br>(semana) | DATA                | ASSUNTO                                                           | CARGA<br>SÍNCRONA (h-a) | CARGA<br>ASSÍNCRONA (h-a) |
| 1 <sup>a</sup>   | 04/03/20 a 07/03/20 | Panorama da energia solar fotovoltaica no Brasil e no Mundo.      | ministrada na mo        | odalidade presencial      |
| 2 a              | 09/03/20 a 14/03/20 | Radiação solar.                                                   | ministrada na mo        | odalidade presencial      |
| 3 a              | 31/08/20 a 05/09/20 | Radiação solar.                                                   | 1                       | 3                         |
| 4 <sup>a</sup>   | 07/09/20 a 12/09/20 | Radiação solar. Software de radiação solar.                       | 2                       | 2                         |
| 5 <sup>a</sup>   | 14/09/20 a 19/09/20 | Células e módulos fotovoltaicos.                                  |                         | 4                         |
| 6 <sup>a</sup>   | 21/09/20 a 26/09/20 | Trabalho 1: Radiação solar.                                       |                         | 4                         |
| 7 <sup>a</sup>   | 28/09/20 a 03/10/20 | Sistemas fotovoltaicos de geração distribuída. Inversores.        |                         | 4                         |
| 8 a              | 05/10/20 a 10/10/20 | Geração distribuída e sistema de compensação de energia.          |                         | 4                         |
| 9 a              | 12/10/20 a 17/10/20 | Dimensionamento de sistemas fotovoltaicos de geração distribuída. | 2                       | 2                         |
| 10 <sup>a</sup>  | 19/10/20 a 24/10/20 | Simulação de sistemas fotovoltaicos de geração distribuída.       |                         | 4                         |
| 11 <sup>a</sup>  | 26/10/20 a 31/10/20 | Dimensionamento e simulação de sistemas fotovoltaicos autônomos.  | 2                       | 2                         |
| 12ª              | 02/11/20 a 07/11/20 | Dimensionamento e simulação de sistemas fotovoltaicos autônomos.  |                         | 4                         |
| 13 a             | 09/11/20 a 14/11/20 | Trabalho 2: Sistemas fotovoltaicos autônomos.                     |                         | 4                         |
| 14 <sup>a</sup>  | 16/11/20 a 21/11/20 | Usinas fotovoltaicas.                                             |                         | 4                         |
| 15 <sup>a</sup>  | 23/11/20 a 28/11/20 | Trabalho 3: Sistemas fotovoltaicos de geração distribuída.        | 2                       | 2                         |
| 16ª              | 30/11/20 a 05/12/20 | Trabalho 3: Sistemas fotovoltaicos de geração distribuída.        |                         | 4                         |
| 17 a             | 07/12/20 a 12/12/20 | AVALIAÇÃO DE<br>RECUPERAÇÃO.                                      |                         | 4                         |
| 18ª              | 14/12/20 a 19/12/20 | Divulgação das Notas Finais.                                      |                         | 4                         |

| XII. Feriados e dias não letivos previstos para o semestre 2020.1 |                         |  |
|-------------------------------------------------------------------|-------------------------|--|
| DATA                                                              |                         |  |
| 07/09/20 (seg)                                                    | Independência do Brasil |  |
| 12/10/20 (seg)                                                    | Nossa Senhora Aparecida |  |
| 28/10/20 (qua)                                                    | Dia do Servidor Público |  |
| 02/11/20 (seg)                                                    | Finados                 |  |

## XIII. BIBLIOGRAFIA BÁSICA\*\*\*

- 1. PINHO, João Tavares e GALDINO, Marco Antonio (org.). **Manual de Engenharia para Sistemas Fotovoltaicos.** CEPEL/CRESESB. Rio de Janeiro. 2014. 530p.
- 2. ZILLES, Roberto et al. **Sistemas fotovoltaicos conectados à rede elétrica.** Recife: Editora da UFPE, 2012. 208p.
- 3. Atlas Brasileiro de Energia Solar. Instituto Nacional de Pesquisas Espaciais. 2ª edição.

# XIV. BIBLIOGRAFIA COMPLEMENTAR

- 1. DUFFIE, John A.; BECKMAN, William A. **Solar Engineering of Thermal Processes.** 3. ed. New York: John Wiley And Sons, 2006. 928 p.
- 2. RUTHER, R. Edifícios Solares Fotovoltaicos. 1. ed. Florianópolis: LABSOLAR/UFSC, 2004. 114 p. Volume 1.
- VILLALVA, Marcelo Gradella; GAZOLI, Jonas Rafael. Énergia solar fotovoltaica: Conceitos e aplicações. São Paulo: Editora Érica Ltda, 2012. 224p.

<sup>\*\*\*</sup> A bibliografía principal das disciplinas deverá ser pensada a partir do acervo digital disponível na Biblioteca Universitária, como forma de garantir o acesso aos estudantes, ou, em caso de indisponibilidade naqueles meios, deverão os professores disponibilizar versões digitais dos materiais exigidos no momento de apresentação dos projetos de atividades aos departamentos e colegiados de curso. (Art. 15 § 2° da Res. 140/2020/CUn de 24 de julho de 2020)

| Professor:                            |                          |
|---------------------------------------|--------------------------|
| Aprovado pelo Colegiado do Curso em// | Presidente do Colegiado: |