

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE DEPARTAMENTO DE ENERGIA E SUSTENTABILIDADE PLANO DE ENSINO*

* plano de ensino adaptado, em caráter excepcional e transitório, para substituição de aulas presenciais por aulas em meios digitais, enquanto durar a pandemia do novo coronavírus – COVID-19, em atenção à Portaria MEC 344, de 16 de junho de 2020 e à Resolução 140/2020/CUn, de 24 de julho de 2020.

SEMESTRE 2020.1

I. IDENTIFICAÇÃO DA DISCIPLINA:				
CÓDIGO**	NOME DA DISCIPLINA	Nº DE HORAS-AULA SEMANAIS		TOTAL DE HORAS-AULA
		TEÓRICAS	PRÁTICAS	SEMESTRAIS
EES7385	SISTEMAS TÉRMICOS	04	00	72

^{**} plano a ser considerado equivalente, em caráter excepcional e transitório na vigência da pandemia COVID-19, à disciplina EES7385.

HORÁRIO				
TURMAS TEÓRICAS	TURMAS PRÁTICAS	MODALIDADE		
09653 - 3.1830-2	-	Ensino Remoto Emergencial		
- 5.1830-2		_		

II. PROFESSOR(ES) MINISTRANTE(S)		
THIAGO DUTRA (dutra.thiago@ufsc.br)		

III. PRÉ-REQUISITO(S)	
CÓDIGO	NOME DA DISCIPLINA
EES7366 (ou EES7351)	Termodinâmica II
EES7355	Transferência de Calor e Massa II
DEC7142	Cálculo Numérico em Computadores

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA
Bacharelado em Engenharia de Energia

V. JUSTIFICATIVA

Esta disciplina aborda um conteúdo aplicado, reunindo fundamentos apresentados aos estudantes ao longo do curso de engenharia de energia e conferindo uma complementação na sua formação profissional. O conteúdo tem relação direta com atividades profissionais que poderão ser realizadas pelo engenheiro de energia, como atuar na análise/dimensionamento de equipamentos de geração e distribuição de vapor, equipamentos para refrigeração e condicionamento de ar, bem como na modelagem, simulação e otimização de sistemas térmicos.

VI. EMENTA

Geração e distribuição de vapor. Equipamentos para refrigeração e ar condicionado. Modelagem, simulação e otimização de sistemas térmicos.

VII. OBJETIVOS

Objetivos Gerais:

Ao término desta disciplina, é esperado que o aluno demonstre conhecimento sobre os principais aspectos relacionados a geração e distribuição de vapor, equipamentos de refrigeração e condicionamento de ar, e modelagem, simulação e otimização de sistemas térmicos.

Objetivos Específicos:

Para tanto, espera-se que os alunos:

- Realizem análises teóricas de ciclos de potência a vapor e demonstrem conhecimento de conceitos associados geradores de vapor (função, componentes, combustão e balanços energéticos) e à distribuição de vapor;
- Reconheçam os principais equipamentos utilizados em refrigeração e condicionamento de ar bem como seus tipos e funções;
- Consigam modelar, simular e otimizar um sistema térmico em condição de regime permanente.

VIII. CONTEÚDO PROGRAMÁTICO

- 1. Geração e distribuição de vapor
- Revisão do ciclo de Rankine;
- Aspectos gerais sobre geradores de vapor;
- Combustão e combustíveis;
- Fornalhas e queimadores;
- Dispositivos de controle e segurança;
- Transferência de calor em caldeiras;
- Distribuição de vapor.
- 2. Equipamentos de refrigeração e condicionamento de ar
- Evaporadores e condensadores;
- Compressores;
- Dispositivos de expansão.
- 3. Modelagem, simulação e otimização de sistemas térmicos
- Modelagem matemática;
- Modelagem numérica/simulação;
- Otimização.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A metodologia deve ser redefinida, especificando os recursos de tecnologias da informação e comunicação que serão utilizados para alcançar cada objetivo (preferencialmente na forma de uma matriz instrucional) (Art. 15 § 4° da Res. 140/2020/CUn de 24 de julho de 2020).

Todo material utilizado, como apresentações, *slides*, vídeos, referências, entre outros, deverá ser disponibilizado pelos professores posteriormente, garantindo o acesso do estudante a material adequado (Art. 15 § 3° da Res. 140/2020/CUn de 24 de julho de 2020).

Serão aplicadas diferentes metodologias de ensino à distância:

- 1) Aulas expositivas e síncronas, utilizando provavelmente a plataforma Google Meet;
- 2) Aulas expositivas e assíncronas, disponibilizada aos alunos por meio do AVEA Moodle;
- 3) Sala de aula invertida: O professor irá orientar os alunos a estudarem um determinado material referente a um tópico do conteúdo. Essa atividade deve ser executada pelos alunos de forma assíncrona. Em seguida, um encontro síncrono é realizado (Google Meet), no qual serão desenvolvidas atividades propostas pelo professor para consolidação do aprendizado.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito
 a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70,§ 2º. A nota será
 calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida
 na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{MF + REC}{2}$$

 Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações

A nota final será computada a partir da combinação das seguintes atividades avaliativas assíncronas:

<u>Atividade 1 (A1)</u>: resolução de exercício sobre ciclo de Rankine, utilizando o software EES (acesso via terminal de software da UFSC - https://otrs.setic.ufsc.br/otrs/public.pl?Action=PublicFAQZoom;ItemID=891).

<u>Atividade 2 (A2)</u>: resolução de lista de exercícios sobre geração e distribuição de vapor. Cada aluno ficará encarregado por solucionar uma ou mais questões propostas pelo professor. Ao resolver a(s) questão(ões), o aluno deve gravar o procedimento com explicação detalhada à medida em que desenvolve a solução. O vídeo deve permitir clara identificação do aluno.

<u>Atividade 3 (A3)</u>: resolução de lista de exercícios que contempla o conteúdo de refrigeração/ar condicionado e modelagem/otimização de sistemas térmicos.

A média final será calculada da seguinte forma:

$$MF = 0.2 * A1 + 0.3 * A2 + 0.5 * A3$$

Registro de frequência

Neste tópico, deve-se descrever como será realizado o registro de frequência dos alunos, seguindo parâmetros deliberados em colegiados (Art. 15 § 4° da Res. 140/2020/CUn de 24 de julho de 2020).

A frequência será aferida a partir da entrega das atividades avaliativas assíncronas e do relatório de participação no curso, contabilizado a partir da visualização/download dos arquivos postados pelo professor.

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97

 O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID).

XI. CRONOGRAMA PREVISTO				
AULA (semana)	DATA	ASSUNTO	CARGA SÍNCRONA (h-a)	CARGA ASSÍNCRONA (h-a)
1 ^a	04/03/20 a 07/03/20	Apresentação do plano de ensino. Revisão do ciclo Rankine.	ministrada na m	odalidade presencial
2 a	09/03/20 a 14/03/20	Revisão do ciclo Rankine.	ministrada na m	odalidade presencial
3ª	31/08/20 a 05/09/20	Apresentação do novo plano de ensino. Revisão do conteúdo prépandemia. Aspectos gerais de geradores de vapor.	0,5	3,5
4 ^a	07/09/20 a 12/09/20	Aspectos gerais de geradores de vapor. Combustão e combustíveis.	1	3
5 a	14/09/20 a 19/09/20	Fornalhas e queimadores.	1	3
6ª	21/09/20 a 26/09/20	Dispositivos de controle e segurança. Postar A1 (24/09).	0,5	3,5
7 a	28/09/20 a 03/10/20	Tiragem.	1	3
8 a	05/10/20 a 10/10/20	Transferência de calor em caldeiras.	1	3
9 a	12/10/20 a 17/10/20	Distribuição de vapor.	1	3
10 a	19/10/20 a 24/10/20	Revisão do ciclo de refrigeração.	1	3
11 ^a	26/10/20 a 31/10/20	Compressores. Postar A2 (29/10).	1	3
12 a	02/11/20 a 07/11/20	Evaporadores e condensadores.	1	3
13 a	09/11/20 a 14/11/20	Dispositivos de expansão.	1	3
14 ^a	16/11/20 a 21/11/20	Modelagem e simulação de sistemas térmicos.	0	4

15 ^a	23/11/20 a 28/11/20	Modelagem e simulação de	1	3
.	20/11/20 4 20/11/20	sistemas térmicos. Otimização.	-	
16 a	30/11/20 a 05/12/20	Otimização.	1	3
17 a	07/12/20 a 12/12/20	Nova avaliação. Postar A3 (10/12).	0	4
18 ª		Avaliação de Recuperação (REC).	0	4
		Divulgação das notas.		

XII. Feriados e dias não letivos previstos para o semestre 2020.1		
DATA		
07/09/20 (seg)	Independência do Brasil	
12/10/20 (seg)	Nossa Senhora Aparecida	
28/10/20 (qua)	Dia do Servidor Público	
02/11/20 (seg)	Finados	

XIII. BIBLIOGRAFIA BÁSICA***

- BLACK & VEATCH. Power Plant Engineering. Springer-Verlag US, 1996.
- 2. NATIONAL INDUSTRIAL FUEL EFFICIENCY SERVICE LTD. The Boiler Operators Handbook. Graham and Trotman Limited, 1985. (base de dados Springer)
- KROOS, K. A., POTTER, M. C. Termodinâmica para Engenheiros. São Paulo: Cengage Learning, 2015.
- SIMONSON, J. Thermodynamics. The Macmillan Press LTD, 1993. (base de dados Springer)
- WIRZ, D. Refrigeração Comercial para Técnicos em Ar Condicionado. Tradução da 2ª edição americana. 5. Cengage Learning, 2011.
- KOELET, P. C., GRAY, T. B. Industrial Refrigeration: Principles, Design and Applications. The Macmillan Press LTD, 1992. (base de dados Springer)
- LANGE, K. Optimization. Springer Science+Business Media New York. 2004.
- DUTRA, T. Notas de aula da disciplina Sistemas Térmicos. 2020.

Observação: A bibliografia supracitada (de 1 a 7) está atualmente disponível (11/08/2020) no acervo digital da BU. No caso de a UFSC interromper o acesso a esses livros digitais, o professor irá fornecer o material bibliográfico necessário para atingir os objetivos da disciplina.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- ÇENGEL, Y. A.; BOLES, M. A. Termodinâmica. 7. Ed. Porto Alegre; AMGH, 2013.
- 10. BAZZO, E. **Geração de Vapor**. 2ª edição. Editora da UFSC, 1995.
- 11. STOECKER, W. F.; Jones, J. W. Refrigeração e Ar Condicionado. Editora McGraw-Hill do Brasil, Ltda. 1985.
- 12. STOECKER, W. F. Design of Thermal Systems. 3. ed. Ohio: Mcgraw-hill Science/engineering/math, 1989. 528

como forma de garantir o acesso aos estudantes, ou, em caso de disponibilizar versões digitais dos materiais exigidos no momento de colegiados de curso. (Art. 15 § 2° da Res. 140/2020/CUn de 24 d	e indisponibilidade naqueles meios, deverão os professores e apresentação dos projetos de atividades aos departamentos
Professor:	
Aprovado pelo Colegiado do Curso em//	Presidente do Colegiado:

^{***} A bibliografia principal das disciplinas deverá ser pensada a partir do acervo digital disponível na Biblioteca Universitária.